Steady state coexistence solutions of reaction-diffusion competition models
نویسندگان
چکیده
منابع مشابه
Steady state coexistence solutions of reaction-diffusion competition models
Two species of animals are competing in the same environment. Under what conditions do they coexist peacefully? Or under what conditions does either one of the two species become extinct, that is, is either one of the two species excluded by the other? It is natural to say that they can coexist peacefully if their rates of reproduction and self-limitation are relatively larger than those of com...
متن کاملSteady State Solutions of a Reaction-diffusion System Modeling Chemotaxis
We study the following nonlinear elliptic equation 8 < : u ? u + (e u R e u ? 1 jj) = 0 in ; @u @ = 0 on @; where is a smooth bounded domain in R 2. This equation arises in the study of stationary solutions of a chemotaxis system proposed by Keller and Segel. Under the condition that > jj ? 1 ; 6 = 4m for m = 1; 2; :::, where 1 is the rst (nonzero) eigenvalue of ? under the Neumann boundary con...
متن کاملSteady-state solutions of hydrodynamic traffic models.
We investigate steady-state solutions of hydrodynamic traffic models in the absence of any intrinsic inhomogeneity on roads such as on-ramps. It is shown that typical hydrodynamic models possess seven different types of inhomogeneous steady-state solutions. The seven solutions include those that have been reported previously only for microscopic models. The characteristic properties of wide jam...
متن کاملTailored Finite Point Method for Steady - State Reaction - Diffusion Equations
Abstract. In this paper, we propose to use the tailored-finite-point method (TFPM) for a type of steady-state reaction-diffusion problems in two dimensions. Three tailored finite point schemes are constructed for the given problem. Our finite point method has been tailored to some particular properties of the problem. Therefore, our TFPM satisfies the discrete maximum principle automatically. W...
متن کاملQuasi–steady–state Approximation for Reaction–diffusion Equations
In this paper, we present a rigorous proof of the quasi– steady–state approximation (QSSA) used in chemistry, in two different settings: the first one corresponds to reaction–diffusion equations, while the second one is devoted to ODEs, with a particular attention to the effect of temperature.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 2006
ISSN: 0011-4642,1572-9141
DOI: 10.1007/s10587-006-0086-5